Abstract

Abstract The northern Pacific Rim—for the purposes of this contribution—comprises the Mesozoic and Cenozoic magmatic-arc and associated terranes of eastern China, Korea, Japan, the Russian Far East, Alaska, Yukon, British Columbia, the western United States, and Mexico. This ~1,800-km-long segment of the Pacific Rim is marked by a broad spectrum of metallogenic environments and mining jurisdictions, which combine to dictate where and how exploration is conducted and the overriding character of any resulting discoveries. This summary report commences with a brief metallogenic overview of the northern Pacific Rim, with particular attention paid to the world-class Mesozoic and Cenozoic ore deposits that define the region’s premier metallogenic provinces. This is followed by a summary of the relative attractiveness of the region’s various mining jurisdictions, as recorded by recent exploration activity. The major discoveries made along the northern Pacific Rim, particularly during the past half century, are then placed in this metallogenic and regulatory context as a basis for determining the successful exploration methodologies employed. This discovery track record is then used to predict what the future of exploration in this vast and varied region may hold. Much of the northern Pacific Rim, from eastern China and the Russian Far East in the northwest through Alaska to western parts of Canada, the United States, and Mexico in the southeast (Fig. 1), is characterized by a complex array of oceanic, accretionary prism, magmatic arc, and back-arc basin terranes and associated microcontinental blocks accreted to the North China, Siberian, Hyperborean, and North American cratons, mainly during Mesozoic times (Coney et al., 1980; Campa and Coney, 1983; Kojima, 1989; Nokleberg et al., 2005; Yakubchuk, 2009). The metallogeny of these tectonic collages is dictated by various combinations of pre-, syn-, and postaccretion ore-forming events, the last of which are generally preeminent, except in British Columbia (Nokleberg et al., 2005; Nelson and Colpron, 2007). Although the Meso-Cenozoic metallogeny of the northwestern and northeastern Pacific quadrants displays some similarities, it is the contrasts that are most marked. The main contrasts stem from the preeminence of tin, tungsten, and antimony in eastern China, Korea, Japan, and the Russian Far East and of copper and silver in Western Canada, the conterminous United States, and Mexico. Nonetheless, both the northwestern and northeastern Pacific quadrants are exceptionally well endowed with gold and molybdenum deposits. The northeasternmost Russian Far East, Alaska, and Yukon Territory display elements of both northwestern and northeastern Pacific metallogeny (Fig. 1). These metallogenic contrasts between the northwestern and northeastern quadrants result in China being the world’s leading producer of tungsten, tin, bismuth, and antimony, mostly from its eastern Mesozoic metallogenic province.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.