Abstract

ABSTRACTThe 1200 km2, Early Devonian (395 Ma) Wilsons Promontory batholith is a post-tectonic, high-level, composite body of S-type granites exposed on Wilsons Promontory and its offshore islands. Four plutons and six members are mapped and described. The rocks commonly contain magmatic garnet and cordierite, in addition to biotite, and biotite–quartz pseudomorphs after orthopyroxene. Planar fabrics abound in the batholith, which is characterised by emplacement of shallow-dipping granitic sheets, on a variety of scales. Particle size and density separation occurred during magma flow, and produced a wide variety of structures including layering, pipes and whorls rich in mafic minerals, K-feldspar phenocryst alignments and a notable swarm of enclaves. Local filter pressing may have played a role in the production of accumulations of K-feldspar crystals and the formation of late, tourmaline-bearing leucogranites and quartz veins. Batholith zonation and the distribution of component plutons are inferred to have been formed through sequential intrusion of separate magma batches rather than in situ differentiation. Overall, the batholith appears to consist of saucer-shaped plutons, and it is tilted gently to the east.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.