Abstract
This paper describes the geology and geotechnical engineering properties of a sensitive marine clay deposit at a research site located in Newbury, Massachusetts (MA) in the northeast USA. Results from in situ testing, soil sampling, and laboratory testing are presented. The clay is locally known as Boston Blue Clay (BBC) which is a glacial marine clay that was deposited approximately 14,000 years ago in the greater Boston, MA area during retreat of the Laurentide Ice Sheet. The thickness, stress history, and soil properties of BBC can vary significantly depending on location. At the Newbury research site, the BBC deposit consists of a shallow thin desiccated crust underlain by a 12-meter thick low plasticity clay with an overconsolidation ratio ranging from 2 to 3. Sensitivity of the clay ranges from approximately 10 to 30, based on field vane and fall cone measurements. In situ testing performed at the site included seismic piezocone and field vane. Soil sampling was performed using a variety of samplers including Sherbrooke block, fixed piston thin-walled Shelby tube, and a thick-walled drive sampler. A full suite of advanced laboratory tests was performed on the various quality samples collected, which ranged from very poor (thick-walled drive sampler) to excellent (Sherbrooke block), including constant rate of strain consolidation, consolidated undrained triaxial and direct simple shear. The efficacy of the Recompression and SHANSEP procedures to mitigate sample disturbance was evaluated using results from the advanced laboratory test program. The paper presents data from these advanced tests as well as other soil classification, index, and engineering properties based on in situ measurements and laboratory test results. A synopsis of constructed facilities built on and in BBC within the greater Boston area is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.