Abstract

On 26 December 2004 a magnitude M 9.3 earthquake deformed the ocean floor 160 km off the coast of Sumatra, generating the Indian Ocean tsunami and thus causing large sediment transfers due to tsunami run-up in coastal lowlands around the Indian Ocean (e.g., Goff et al., 2006; Moore et al., 2006; Hori et al., 2007; Hawkes et al., 2007; Choowong et al., 2007, 2010). Sediment transfers of this scale are rare events historically. Only when an unusual tsunami strikes coastal lowlands does a large-scale sediment transfer occur, leaving a sedimentary record, that is, tsunami deposits, in the geological strata on shore (Dawson & Stewart, 2007). In this chapter, we seek to understand the run-up process of past unusual tsunamis by examining a series of tsunami deposits on the Pacific coast of eastern Hokkaido, northern Japan, and we estimate the average recurrence interval of such tsunamis from the geological record. Large earthquakes with M > ~8 in the Kuril subduction zone have historically generated tsunamis that caused damage in eastern Hokkaido between Nemuro and the Tokachi coast (Satake et al., 2005; Fig. 1). Most recently, the 1952 Tokachi-oki, the 1960 Chilean, the 1973 Nemuro-oki, and the 2003 Tokachi-oki tsunamis caused considerable damage and great loss of life in this district. Therefore, it is very important to estimate the likely timing and size of the next large, earthquake-generated tsunami. Information about historical earthquakes in the Kuril subduction zone is limited, however, and no documents from before the 19th century that might refer to tsunami events are available. The earliest written records from eastern Hokkaido are the “Nikkanki” series of documents from Kokutai-ji Temple, which was built by the Edo government at Akkeshi in 1805 (Soeda et al., 2004; Fig. 1). In the hope of finding traces of past giant tsunamis to use to evaluate the frequency and extent of past tsunami inundation in east Hokkaido, late Holocene coastal sediments such as peat beds and lagoon sediments have been studied since 1998 by our research group and other researchers (e.g., Hirakawa et al., 2000; Nishimura et al., 2000; Sawai, 2002; Nanayama et al., 2003; Soeda et al., 2004). Nanayama et al. (2003, 2007) and Sawai et al. (2009) have reported the general stratigraphy of unusual tsunami deposits due to “500-year earthquake”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call