Abstract

Geology is the science of how the Earth functions and has evolved and, as such, it can contribute to our understanding of the climate system and how it responds to the addition of carbon dioxide (CO2) to the atmosphere and oceans. Observations from the geological record show that atmospheric CO2 concentrations are now at their highest levels in at least the past 3 million years. Furthermore, the current speed of human-induced CO2 change and warming is nearly without precedent in the entire geological record, with the only known exception being the instantaneous, meteorite-induced event that caused the extinction of non-bird-like dinosaurs 66 million years ago. In short, whilst atmospheric CO2 concentrations have varied dramatically during the geological past due to natural processes, and have often been higher than today, the current rate of CO2 (and therefore temperature) change is unprecedented in almost the entire geological past. The geological record shows that changes in temperature and greenhouse gas concentrations have direct impacts on sea-level, the hydrological cycle, marine and terrestrial ecosystems, and the acidification and oxygen depletion of the oceans. Important climate phenomena, such as the El Nino–Southern Oscillation (ENSO) and the monsoons, which today affect the socio-economic stability and food and water security of billions of people, have varied markedly with past changes in climate. Climate reconstructions from around the globe show that climate change is not globally uniform, but tends to exhibit a consistent pattern, with changes at the poles larger than elsewhere. This polar amplification is seen in ancient warmer-than-modern time intervals like the Eocene epoch, about 50 million years ago and, more recently, in the Pliocene, about 3 million years ago. The warmest intervals of the Pliocene saw the disappearance of summer sea ice from the Arctic. The loss of ice cover during the Pliocene was one of the many rapid climate changes observed in the record, which are ften called climate tipping points. The geological record can be used to calculate a quantity called Equilibrium Climate Sensitivity, which is the amount of warming caused by a doubling of atmospheric CO2, after various processes in the climate system have reached equilibrium. Recent estimates suggest that global mean climate warms between 2.6 and 3.9°C per doubling of CO2 once all slow Earth system processes have reached equilibrium. The geological record provides powerful evidence that atmospheric CO2 concentrations drive climate change, and supports multiple lines of evidence that greenhouse gases emitted by human activities are altering the Earth’s climate. Moreover, the amount of anthropogenic greenhouse gases already in the atmosphere means that Earth is committed to a certain degree of warming. As the Earth’s climate changes due to the burning of fossil fuels and changes in land-use, the planet we live on will experience further changes that will have increasingly drastic effects on human societies. An assessment of past climate changes helps to inform policy decisions regarding future climate change. Earth scientists will also have an important role to play in the delivery of any policies aimed at limiting future climate change.

Highlights

  • Geological processes influence the climate system over a wide range of time-scales, from years to billions of years, and across all aspects of the Earth system, including the atmosphere, cryosphere, hydrosphere, biosphere, lithosphere and global carbon cycle

  • Because the geological past provides convincing examples of how the Earth functioned in different climate states, palaeoclimate research is making increasingly valuable contributions to successive IPCC Assessment Reports and is influencing policy decisions. This statement is organized around nine questions, all focused on the interactions between geology and climate change

  • We focus on CO2 because water vapour acts as a feedback to changing CO2 and is not able to drive climate change itself (Lacis et al 2010)

Read more

Summary

Introduction

Geological processes influence the climate system over a wide range of time-scales, from years to billions of years, and across all aspects of the Earth system, including the atmosphere (from the troposphere to the exosphere), cryosphere (encompassing snow, ice and permafrost), hydrosphere (encompassing oceans, streams, rivers, lakes and groundwater), biosphere (including soils), lithosphere (e.g. the rock cycle) and global carbon cycle. Palaeoclimate scientists can use these various records of Earth’s climate to understand how the climate system operates over a range of time-scales, including providing vital information about the consequences of the current sharp rise in greenhouse gas concentrations and the resultant enhancement of the natural greenhouse effect This contribution of palaeoclimatology to climate science is becoming more important as global temperatures continue to increase, along with ice melting and sea-level rising, in response to a climb in atmospheric CO2 concentration to the highest levels in at least the past 3 million years. Because the geological past provides convincing examples of how the Earth functioned in different climate states (both colder and warmer than present), palaeoclimate research is making increasingly valuable contributions to successive IPCC Assessment Reports and is influencing policy decisions This statement is organized around nine questions, all focused on the interactions between geology and climate change

What does the geological record of climate change look like?
Why has climate changed in the past?
Is our current warming unusual?
Are there past climate analogues for the future?
Findings
How can the geological record be used to evaluate climate models?
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call