Abstract

We identified geological units in the Francistown area in northeastern Botswana by using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR) data, which contains both surface temperature and spectral emissivity information. A scatter plot of ASTER L1B daytime TIR digital values and L2 daytime temperature indicates that in the ASTER L1B daytime TIR data, bands 10, 11, and 12 contain spectral emissivity and temperature information, whereas surface temperature dominates the spectral emissivity information in bands 13 and 14. Visual interpretation of the ASTER TIR false color composite (FCC) images generated by assigning red, green, and blue to band 14:band 12:band 10 using L1B daytime data allowed us to identify mafic-to-ultramafic units and quartz-rich felsic units. Mafic-to-ultramafic units such as gabbro, dolerite, and dunite appear white in ASTER L1B daytime TIR FCC images due to their high spectral emissivities in the 8–9μm region (bands 10 and 12) and high surface temperatures. Mafic-to-ultramafic units have higher surface temperatures than other geological units because they absorb more solar radiation due to their lower albedos and they have a lower thermal inertia. Quartz-rich felsic units such as granite and dry river sand appear reddish in the ASTER L1B daytime TIR FCC image because the spectral emissivity of quartz is lower in the 8–9μm region (bands 10 and 12) than in the 10–12μm region (band 14). Mafic-to-ultramafic and granitic units are important targets for mineral exploration because they are potential geological units to host or accompany mineralization. The proposed ASTER L1B daytime TIR FCC images can be prepared very simply and they provide valuable information for geological mapping and mineral exploration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call