Abstract
AbstractThe presence of a set of well-known turbidite successions, deposited in progressively E-migrating foredeep basins and subsequently piled up with east vergence, makes the Northern Apennines of Italy paradigmatic of the evolution of deepwater fold-and-thrust belts. This study focuses on the early Apenninic collisional stage, early Miocene in age, which led to the accretion of the turbidites of the Trasimeno Tectonic Wedge (TTW), in the central part of the Northern Apennines. Based on the interpretation of previously unpublished seismic reflection profiles with new surface geology data and tectonic balancing, we present a detailed tectonic reconstruction of the TTW. In the study area, the TTW is characterized by a W-dipping shaly basal décollement located at a depth of 1–5 km. The tectonic wedge isc. 5 km thick at its central-western part and tapers progressively eastwards toc. 1 km. The total shortening, balanced along a 33 km long cross-section, isc. 60 km, including 20 km (40%) of internal imbrication,c. 23 km of horizontal ENE-wards translation along the basal décollement andc. 17 km of passive translation caused by the later shortening of footwall units. Deformation balancing, constrained through upper Aquitanian – upper Burdigalian (c. 21–16 Ma) biostratigraphy, provides an average shortening rate ofc. 8.6 mm a–1. Internal shortening of the TTW shows an average shortening rate ofc. 4 mm a–1for this period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.