Abstract

The objectives of lunar satellite remote sensing are to study lunar surface characteristics, inner structure, and its evolution history. The contents of TiO2 and FeO are assessed from Clementine UV/VIS data for Sinus Iridum. The geologic stratigraphic units and crates are interpreted visually based on SELENE Terrain Camera (TC) images and the spatial resolution of which is up to 10 m. And the geologic ages of different stratigraphic units are calculated by the crater size-frequency distributions measurements. The gravity anomaly is generated from SELENE gravity model (SGM90d) to show its difference from Mare Imbrium. Furthermore, the thickness of lunar regolith is also derived from microwave radiometer data of Chang’e-1 satellite. Integrating these results, it shows that the Sinus Iridum is different from the Mare Imbrium in inner structure and surface sedimentation. And its history of subsidence, deposition, volcanism, and impact is described. It makes sense to the future soft-landing and sampling at potential Sinus Iridum by remote sensing geologic analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.