Abstract
U–Pb single zircon crystallization ages were determined using TIMS and sensitive high resolution ion microprobe (SHRIMP) on samples of granitoid rocks exposed in the Serrinha nucleus granite–greenstone terrane, in NE Brazil. Our data show that the granitoid plutons can be divided into three distinct groups. Group 1 consists of Mesoarchaean (3.2–2.9 Ga) gneisses and N-S elongated TTG (Tonalite-Trondhjemite-Granodiorite) plutons with gneissic borders. Group 2 is represented by ca. 2.15 Ga pretectonic calc-alkaline plutons that are less deformed than group 1. Group 3 is ca. 2.11–2.07 Ga, late to post-tectonic plutons (shoshonite, syenite, K-rich granite and lamprophyre). Groups 2 and 3 are associated with the Transamazonian orogeny. Xenocryst ages of 3.6 Ga, the oldest zircon yet recorded within the São Francisco craton, are found in the group 3 Euclides shoshonite within the Uauá complex and in the group 2 Quijingue trondhjemite, indicating the presence of Paleoarchaean sialic basement. Group 1 gneiss-migmatitic rocks (ca. 3200 Ma) of the Uauá complex constitute the oldest known unit. Shortly afterwards, partial melting of mafic material produced a medium-K calc-alkaline melt, the younger Santa Luz complex (ca. 3100 Ma) to the south. Subsequent TTG melts intruded in different phases now exposed as N-S elongated plutons such as Ambrósio (3162 ± 26 Ma), Araci (3072 ± 2 Ma), Requeijão (2989 ± 11 Ma) and others, which together form a major part of the Archaean nucleus. Some of these plutons have what appear to be intrusive, but are probably remobilized, contacts with the Transamazonian Itapicuru greenstone belt. The older gneissic rocks occur as enclaves within younger Archaean plutons. Thus, serial additions of juvenile material over a period of several hundred m.y. led to the formation of a stable micro-continent by 2.9 Ga. Evidence for Neoarchaean activity is found in the inheritance pattern of only one sample, the group 2 Euclides pluton. Group 2 granitoid plutons were emplaced at 2.16–2.13 Ga in a continental arc environment floored by Mesoarchaean crust. These plutons were subsequently deformed and intruded by late to post-tectonic group 3 alkaline plutons. This period of Transamazonian orogeny can be explained as a consequence of ocean closure followed by collision and slab break-off. The only subsequent magmatism was kimberlitic, probably emplaced during the Neoproterozoic Braziliano event, which sampled older zircon from the basement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.