Abstract

Early Mars climate research has well-defined goals (MEPAG 2018). Achieving these goals requires geologists and climate modelers to coordinate. Coordination is easier if results are expressed in terms of well-defined parameters. Key parameters include the following quantitative geologic constraints. (1) Cumulative post-3.4 Ga precipitation-sourced water runoff in some places exceeded $1~\mbox{km}$ column. (2) There is no single Early Mars climate problem: the traces of ≥2 river-forming periods are seen. Relative to rivers that formed earlier in Mars history, rivers that formed later in Mars history are found preferentially at lower elevations, and show a stronger dependence on latitude. (3) The duration of the longest individual river-forming climate was ${>}(10^{2}\mbox{--}10^{3})~\mbox{yr}$ , based on paleolake hydrology. (4) Peak runoff production was ${>}0.1~\mbox{mm}/\mbox{hr}$ . However, (5) peak runoff production was intermittent, sustained (in a given catchment) for only <10% of the duration of river-forming climates. (6) The cumulative number of wet years during the valley-network-forming period was ${>}10^{5}~\mbox{yr}$ . (7) Post-Noachian light-toned, layered sedimentary rocks took ${>}10^{7}~\mbox{yr}$ to accumulate. However, (8) an “average” place on Mars saw water for ${<}10^{7}~\mbox{yr}$ after the Noachian, suggesting that the river-forming climates were interspersed with long globally-dry intervals. (9) Geologic proxies for Early Mars atmospheric pressure indicate pressure was not less than 0.012 bar but not much more than 1 bar. A truth table of these geologic constraints versus currently published climate models shows that the late persistence of river-forming climates, combined with the long duration of individual lake-forming climates, is a challenge for most models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.