Abstract

A series of laboratory and large-scale field model footing tests were conducted to assess the modulus and stress distribution behavior of a clayey soil foundation, both with/without geogrid reinforcement, deviating from the conventional approach of evaluating the strength performance, such as bearing capacity. The modulus was evaluated at three settlement ratios of s/B = 1, 3, and 5%, while the stress distribution angle α was estimated at three applied surface pressures of 234 kPa, 468 kPa, and 936 kPa. The results indicated a stiffer load-settlement response when geogrid reinforcement was included. The modulus of reinforced clayey soil remained nearly constant for test sections with the same reinforced ratio, with the modulus improvement increasing as the reinforced ratio (Rr) increased. The modulus improvement also increased with the settlement ratio (s/B). These results demonstrated that the stress distribution improvement decreased as the surface pressure increased. Generally, both the modulus and stress distribution improvement exhibited an increase with an increase in the tensile modulus of the geogrid. While laboratory model tests consistently provided a higher improvement in the modulus than large-scale field model tests in this study due to a higher reinforced ratio, the stress distribution improvement was similar for both.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call