Abstract

While cycling benefits individuals and society, cyclists are vulnerable road users, and their safety concerns arouse more macro-level spatial crash studies. Our study intends to investigate the spatial effects of population, land use, and bicycle lane infrastructures on bicycle crashes. This was done by developing a semi-parametric Geographically Weighted Poisson Regression (sGWPR) model which deals with the issue of spatial correlation and spatial non-stationarity simultaneously. It is a model that combines both constant and geographically varying parameters. To determine which parameter is fixed or non-stationary, previous studies suggest monitoring the Akaike Information Criterion (AICc). Yet, relying only on AICc might bury some spatial associations. So, in this study, we propose a Linear Model of Coregionalization (LMC) to assist the decision. Here, we use bicycle crash data across the metropolitan area of Greater Melbourne to establish sGWPR models suggested by AICc and LMC, respectively. Comparing the two sGWPR models, we found the sGWPR model under LMC results performs as well as sGWPR models suggested by AICc from the AICc perspective, and a 22.5% improvement in the mean squared error (MSE). It also uncovers more details about the spatial relationship between bicycle crashes and bicycle lane intersection density (BLID), an effect not suggested under AICc results. The parameters of BLID, a new measurement of bicycle lane facilities proposed by us, vary over space across analysis zones in Greater Melbourne.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call