Abstract
A key feature in estimating and applying destination choice models with aggregate alternatives is to sample a set of nonchosen traffic analysis zones (TAZs), plus the one a trip maker chose, to construct a destination choice set. Computational complexity is reduced because the choice set would be too large if all study area TAZs were included in the calibration. Commonly, two types of sampling strategies are applied to draw subsets of alternatives from the universal choice set. The first, and simplest, approach is to select randomly a subset of nonchosen alternatives with uniform selection probabilities and then add the chosen alternative if it is not otherwise included. The approach, however, is not an efficient sampling scheme because most alternatives for a given trip maker may have small choice probabilities. The second approach, stratified importance sampling, draws samples with unequal selection probabilities determined on the basis of preliminary estimates of choice probabilities for every alternative in the universal choice set. The stratified sampling method assigns different selection probabilities to alternatives in different strata. Simple random sampling is applied to draw alternatives in each stratum. However, it is unclear how to divide the study area so that destination TAZs may be sampled effectively. The process of and findings from implementing a stratified sampling strategy in selecting alternative TAZs for calibrating aggregate destination choice models in a geographic information system (GIS) environment are described. In this stratified sampling analysis, stratum regions varied by spatial location and employment size in the adjacent area were defined for each study area TAZ. The sampling strategy is more effective than simple random sampling in regard to maximum log likelihood and goodness-of-fit values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.