Abstract

AbstractWe present a geographical assessment of the performance of crystalline silicon photovoltaic (PV) modules over Europe. We have developed a method that is based on a material specific analytical expression of the PV conversion efficiency, relative to nominal efficiency, as a function of module temperature and irradiance. This method is combined with a climate database that includes average daytime temperature and irradiance profiles. It is found that the geographical variation in ambient temperature and yearly irradiation causes a decrease in overall yearly PV performance from 3 to 13% relative to the performance under Standard Test Conditions, with the highest decrease found in the Mediterranean region. Based on the above results we developed a simplified linear expression of the relative PV module efficiency that is a simple function of yearly total irradiation and yearly average daytime temperature. The coefficients to the linear expression are found by fitting to the map resulting from the above‐mentioned analytical approach. The prediction of total yearly PV output from this linear fit deviates less than 0·5% from the more detailed calculation, thus providing a faster and more simplified alternative to the yield estimate, in the case when only limited climate data are available. Copyright © 2008 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.