Abstract

Geographical variation in vernalization response and narrow-sense earliness was investigated for accessions of wild emmer wheat, Triticum dicoccoides, collected in Israel. Wide variation between and within populations was observed in both characters. The analysis of vernalization response showed that 2 accessions from Tabigha were of a strong spring growth habit, and thus wild emmer wheat was classified into four types, i.e., strongly spring type, moderately spring type, moderately winter type, and strongly winter type, according to their vernalization response. Whereas winter types were frequently found in most populations except that of Tabigha, the distribution of spring types was sporadic and restricted to warmer areas. It was thus suggested that spring type in T. dicoccoides might have evolved from a winter prototype as an adaptation to warmer conditions. Within moderately winter and moderately spring types, quantitative differences in vernalization response, measured as Dof70/Dof20 and Dof20/Dof0, were observed between populations. Inter- and intra-population variation in vernalization response could be explained to some extent by the difference in growing conditions at each habitat. It was clearly indicated that environmental heterogeneity caused ecogenetic differentiation in wild emmer wheat in Israel. Wild emmer wheat also varied considerably for narrow-sense earliness, ranging from 32.9 days to 69.5 days among accessions. However, it was difficult to explain its geographical variation simply by a linear relationship with environmental factors, and a nonlinear relationship and/or unknown microgeographic heterogeneity may be responsible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call