Abstract

δ 13C values and δ 34S values in human kidney stones range from −24 to −10 and −10 to + 20 %., respectively, and depend upon geographical location. Although the distributions overlap, the mean δ 13C values in oxalate stones from North America become less negative with decreasing latitude. For Mexico and Hawaii, the distributions appear to be bimodal. Uric acid stones are generally enriched in 13C by up to 7%. in comparison to oxalates from the same location, whereas cystine stones tend to span the ranges of both stone types. The geographical trends can be explained by the relative proportions of dietary carbon derived ultimately from plants undergoing various established photosynthetic mechanisms (C 3, C 4, CAM). The differences among the various major stone types may reflect isotope fractionation during biochemical conversions. Exogenic oxalates and uric acid are considered to have little role in precipitating the respective minerals. Whereas, the currently available C isotope data support this contention, more data are desirable, particularly for ingested oxalates. In contrast, S isotope data provide strong evidence that cystine stones are derived from ingested organo-S compounds and bear no relation to inorganic sulphate consumed by the individual. In turn, these organic-S compounds were probably derived from sulphate in the hydrosphere at lower levels in the food chain, e.g., by bacterial assimilation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.