Abstract
This study investigates the use of stable isotopes (C, N, H, and O) to characterize the geographical origin of peanuts along with different peanut fractions including whole peanut kernel, peanut shell, delipidized peanuts and peanut oil. Peanut samples were procured in 2017 from three distinctive growing regions (Shandong, Jilin, and Jiangsu) in China. Peanut processing significantly influenced the δ 13C, δ 2H, and δ 18O values of different peanut fractions, whereas δ 15N values were consistent across all fractions and unaffected by peanut processing. Geographical differences of peanut kernels and associated peanut fractions showed a maximum variance for δ 15N and δ 18O values which indicated their strong potential to discriminate origin. Different geographical classification models (SVM, LDA, and k-NN) were tested for peanut kernels and associated peanut fractions. LDA achieved the highest classification percentage, both on the training and validation sets. Delipidized peanuts had the best classification rate compared to the other fractions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.