Abstract

BackgroundMalaria still represents a significant public health problem in China, and the cases dramatically increased in the areas along the Huang-Huai River of central China after 2001. Considering spatial aggregation of malaria cases and specific vectors, the geographical, meteorological and vectorial factors were analysed to determine the key factors related to malaria re-emergence in these particular areas.MethodsThe geographic information of 357 malaria cases and 603 water bodies in 113 villages were collected to analyse the relationship between the residence of malaria cases and water body. Spearman rank correlation, multiple regression, curve fitting and trend analysis were used to explain the relationship between the meteorological factors and malaria incidence. Entomological investigation was conducted in two sites to get the vectorial capacity and the basic reproductive rate to determine whether the effect of vector lead to malaria re-emergence.ResultsThe distances from household of cases to the nearest water-body was positive-skew distributed, the median was 60.9 m and 74% malaria cases were inhabited in the extent of 60 m near the water body, and the risk rate of people live there attacked by malaria was higher than others(OR = 1.6, 95%CI (1.042, 2.463), P < 0.05). The annual average temperature and rainfall may have close relationship with annual incidence. The average monthly temperature and rainfall were the key factors, and the correlation coefficients are 0.501 and 0.304(P < 0.01), respectively. Moreover, 75.3% changes of monthly malaria incidence contributed to the average monthly temperature (Tmean), the average temperature of last two months(Tmean01) and the average rainfall of current month (Rmean) and the regression equation was Y = -2.085 + 0.839I1 + 0.998Tmean0 - 0.86Tmean01 + 0.16Rmean0. All the collected mosquitoes were Anopheles sinensis. The vectorial capacity and the basic reproductive rate of An. sinensis in two sites were 0.6969, 0.4983 and 2.1604, 1.5447, respectively.ConclusionThe spatial distribution between malaria cases and water-body, the changing of meteorological factors, and increasing vectorial capacity and basic reproductive rate of An. sinensis leaded to malaria re-emergence in these areas.

Highlights

  • Malaria still represents a significant public health problem in China, and the cases dramatically increased in the areas along the Huang-Huai River of central China after 2001

  • The distances from household of cases to the nearest water-body was positive-skew distributed, the median was 60.9 m and 74% malaria cases were inhabited in the extent of 60 m near the water body, and the risk rate of people live there attacked by malaria was higher than others(OR = 1.6, 95%CI (1.042, 2.463), P < 0.05)

  • In the 21th century, malaria has re-emerged in these areas, especially the Anhui Province, and a total 26,873 malaria cases and 108,594 suspected cases with 23 deaths were reported by the annual case reporting system in 858 counties of 22 Provinces in 2008, and the annual incidence was 0.21/10 000

Read more

Summary

Introduction

Malaria still represents a significant public health problem in China, and the cases dramatically increased in the areas along the Huang-Huai River of central China after 2001. Malaria was historically epidemic in the Huang-Huai River region of central China and the total malaria cases in these areas were 21.99 million, accounting for 91.2% of the total reported cases in the country in 1970s. With active implementation of malaria control measures for more than 30 years, considerable success had been achieved and the cases decreased dramatically and many counties in Huang-Huai River region reached the standard of the basic malaria elimination (the incidence is below than 1/10,000). In central China, the re-emergence of malaria was controlled in 2008, but the number of malaria cases and the incidence in central China still accounts for 68% of the total cases [3]. Malaria vectors in this area included Anopheles sinensis and Anopheles anthropophagus historically

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call