Abstract
Abstract This study performs offline, partial radiative perturbation calculations to determine the geographical distributions of climate feedbacks contributing to the top-of-atmosphere (TOA) radiative energy budget. These radiative perturbations are diagnosed using monthly mean model output from the NCAR Community Climate System Model version 3 (CCSM3.0) forced with the Special Report Emissions Scenario (SRES) A1B emission scenario. The Monte Carlo Independent Column Approximation (MCICA) technique with a maximum–random overlap rule is used to sample monthly mean cloud frequency profiles to perform the radiative transfer calculations. It is shown that the MCICA technique provides a good estimate of all feedback sensitivity parameters. The radiative perturbation results are used to investigate the spatial variability of model feedbacks showing that the shortwave cloud and lapse rate feedbacks exhibit the most and second most spatial variability, respectively. It has been shown that the model surface temperature response is highly correlated with the change in the TOA net flux, and that the latter is largely determined by the total feedback spatial pattern rather than the external forcing. It is shown by representing the change in the TOA net flux as a linear combination of individual feedback radiative perturbations that the lapse rate explains the most spatial variance of the surface temperature response. Feedback spatial patterns are correlated with the model response and other feedback spatial patterns to investigate these relationships. The results indicate that the model convective response is strongly correlated with cloud and water vapor feedbacks, but the lapse rate feedback geographic distribution is strongly correlated with the climatological distribution of convection. The implication for the water vapor–lapse rate anticorrelation is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.