Abstract

BackgroundSchistosoma haematobium infection in endemic areas varies depending on the nature and complexity of the transmission networks present. Studies of micro-geographical transmission of S. haematobium infection indicate that discrepancy in prevalence between households is associated with diverse water contact behaviors and transmission that is restricted to particular sites harboring snail intermediate hosts. Detection of variations in the transmission sources with complex transmission networks of water bodies is required for optimization of malacological control. Longitudinal parasitological and malacological surveys were conducted to investigate geographical variations in transmission of urogenital schistosomiasis in Ikingwamanoti village, Shinyanga District, Tanzania.MethodsUrine samples were collected at baseline and follow-up time points from 282 school-aged children and examined microscopically for the presence of S. haematobium eggs. Malacological surveys involved collection of Bulinus nasutus every month from 30 sites. Snails were examined for patent infections. Global positioning system was used to map household distances from S. haematobium transmission sites, while water contact behavior was assessed using a questionnaire.ResultsSchistosoma haematobium infection was observed to be prevalent among older children (12–14 years) compared to younger groups prior to treatment, but no significant difference in infection prevalence was observed at one-year. Boys were highly infected than girls at both time points. No spatial influence was observed between children’s infection and the distance from child’s residence to the nearby snail habitats nor was any significant association observed between children’s reported water contact behavior with S. haematobium infection. However, malacological surveys with cercarial shedding combined with GPS data detected significant variation among different water sources in the transmission of S. haematobium with children living in households near to ponds with high B. nasutus populations having the highest prevalence of infection.ConclusionsInteraction between malacological surveys with cercarial shedding combined with GPS mapping in endemic settings can help detection of transmission sources even in areas with complex transmission networks. Subsequent studies are needed to determine whether the combination of GPS mapping and parasitology screens can aid the detection of transmission hotspots across varied transmission settings to enhance schistosomiasis control programmes.

Highlights

  • Schistosoma haematobium infection in endemic areas varies depending on the nature and complexity of the transmission networks present

  • Children aged 12– 14 years had a significantly higher prevalence of S. haematobium infection at pre-treatment compared to younger age groups, but atone year post-praziquantel treatment, there was no significant differences in the prevalence of S. haematobium infection among age groups (Table 1)

  • It is possible that boys were more exposed to S. haematobium infection compared to girls due to their routine livestock caring, in which much time is spent searching for different pastures and water sources for watering, and since boys spent most of their time in the field, they utilize that time to swim after cattle watering (Additional file 2: Table S2)

Read more

Summary

Introduction

Schistosoma haematobium infection in endemic areas varies depending on the nature and complexity of the transmission networks present. Detection of variations in the transmission sources with complex transmission networks of water bodies is required for optimization of malacological control. The disease has an extensive geographical distribution and is highly infective to people living in areas with limited access to safe water, sufficient sanitation and hygiene [4, 5] and adequate levels of appropriate health education [6]. Human infection tends to vary with host immunity, water contact patterns, and geographical location, due to the presence and distribution of suitable snail intermediate hosts in water sources. By considering the focal geographical distribution and transmission of the disease, evaluation of the current schistosomiasis control interventions can occur

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call