Abstract

Understanding intraspecific geographic variation in animal signals poses a challenging evolutionary problem. Studies addressing geographic variation typically focus on signals used in mate-choice, however, geographic variation in intrasexual signals involved in competition is also known to occur. In Polistes dominulus paper wasps, females have black facial spots that signal dominance: individuals wasps with more complex ‘broken’ facial patterns are better fighters and are avoided by rivals. Recent work suggests there is dramatic geographic variation in these visual signals of quality, though this variation has not been explicitly described or quantified. Here, we analyze variation in P. dominulus signals across six populations and explore how environmental conditions may account for this variation. Overall, we found substantial variation in facial pattern brokenness across populations and castes. Workers have less broken facial patterns than gynes and queens, which have similar facial patterns. Strepsipteran parasitism, body size and temperature are all correlated with the facial pattern variation, suggesting that developmental plasticity likely plays a key role in this variation. First, the extent of parasitism varies across populations and parasitized individuals have lower facial pattern brokenness than unparasitized individuals. Second, there is substantial variation in body size across populations and a weak but significant relationship between facial pattern brokenness and body size. Wasps from populations with smaller body size (e.g. Italy) tend to have less broken facial patterns than wasps from populations with larger body size (e.g. New York, USA). Third, there is an apparent association between facial patterns and climate, with wasp from cooler locations tending to have higher facial pattern brokenness than wasps from warmer locations. Additional experimental work testing the causes and consequences of facial pattern variation will be important, as geographic variation in signals has important consequences for the evolution of communication systems and social behavior.

Highlights

  • There has been growing interest in the causes and consequences of geographic variation in signals [1], as many species exhibit substantial phenotypic and genotypic variation across populations

  • We explore how facial pattern variation is associated with geographic variation in climate, as climate is well known to influence invertebrate size and condition [29]

  • Additional research will be important to explicitly test the basis of this variation, our results suggest that ecological factors such as the influence of strepsipteran parasitism and climatic conditions on wasp development, may all play a role in the geographic variation in facial patterns

Read more

Summary

Introduction

There has been growing interest in the causes and consequences of geographic variation in signals [1], as many species exhibit substantial phenotypic and genotypic variation across populations. Because selection and drift typically reduce variation, understanding the causes and consequences of variation in natural populations is an important goal of evolutionary biology [5,6,7,8]. In many instances signal variation is a consequence of genetic divergence between populations. Social factors such as the degree and nature of interspecific and intraspecific competition shape signal evolution such that signals can diverge genetically in sympatry in order to reduce the costs of inter-specific mating or agonistic competition with heterospecifics [9,10,11]. Genetic divergence that arises via non-selective processes such as genetic drift may produce geographic variation in signals [12]. Song dialects can quickly arise when young males learn their song from neighboring males and populations are philopatric [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call