Abstract

We investigated the dynamic properties of population cycles in Canadian muskrats (Ondatra zibethicus). Ninety-one historic time series of muskrat-harvest data obtained from the Hudson's Bay Company Archives were analyzed. Most series were 25 years in length (1925–1949) and were distributed primarily throughout five ecozones. For each series, we estimated period length and coefficients for a second-order autoregressive model. Estimated period length varied between 3 and 13 years, with 3- to 5-year periods located in Subarctic-Arctic ecozones. We hypothesize that the 4-year cycles are largely a result of predation by red fox (Vulpes vulpes), which exhibit 4-year cycles in Arctic regions. The remaining ecozones generally averaged 8–9 years in period length. However, the relative contributions of direct and delayed density dependence varied along a latitudinal gradient. We hypothesize that both social and trophic interactions are necessary to produce the observed dynamics, but that shifts in the nature of mink predation were responsible for the changes in the relative contribution of direct and delayed density dependence. Essentially, there is a tension between population-intrinsic and trophic interactions that may bound the length of the cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call