Abstract

In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in ecosystems with low species diversity, functional and phylogenetic approaches may not provide additional insight over a species-based approach.

Highlights

  • Understanding variation in community structure across geographical scales is one of the major goals in ecology and biogeography

  • We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives

  • We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region

Read more

Summary

Introduction

Understanding variation in community structure across geographical scales is one of the major goals in ecology and biogeography. Community similarity decreases as geographical distance increases, a pattern that has been recognized in ecology and biogeography for several decades [1,2], and that provides an important measure of community compositional variation in ecosystems [2,3,4]. The relationship between geographical distance and community similarity could be influenced by different ecological processes at different geographical scales [8,10,11], examining the variation patterns of community structure across geographical scales is essential for better understanding the relative importance of different ecological factors in shaping communities. Community distribution patterns are traditionally studied with a species-based approach, but recently there has been increasing interest in examining community structure and diversity from functional and phylogenetic perspectives [12,13,14]. Studies with combined approaches from species, functional and phylogenetic perspectives have enabled ecologists to obtain further insights into the processes shaping community structure [11,18,19]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.