Abstract

Diabetes is a severe metabolic disorder affecting human health worldwide, with increasing prevalence in low- and middle-income countries. Gaps in knowledge regarding factors that lead to diabetes and its association with tuberculosis (TB) endemicity at the national scale still exist, mainly because of the lack of large-scale dual testing and appropriate evaluation methods. To identify locations in India where diabetes prevalence is concentrated, examine the association of diabetes with sociodemographic and behavioral covariates, and uncover where high regional TB endemicity overlaps with diabetes. This cross-sectional study included 803 164 men aged 15 to 54 years and women aged 15 to 49 years who participated in the Demographic Health Survey (2015-2016), carried out by the India Ministry of Health and Family Welfare using a 2-stage clustered sampling, which included a diabetes estimation component. The survey was conducted from January 2015 to December 2016, and data analysis was conducted from July 2018 to January 2019. Self-reported diabetes status. Self-reported diabetes status was used to estimate the association of covariates, including educational level, sex, age, religion, marital status, alcohol use, tobacco use, obesity status, and household socioeconomic level, with diabetes prevalence. Additionally, regional tuberculosis endemicity level, estimated using the India TB report for 2014 from the Revised National TB Program, was included to evaluate the national extent of the spatial overlap of diabetes and TB. Among 803 164 sampled individuals (691 982 [86.2%] women; mean [SD] age, 30.09 [9.97] years), substantial geographic variation in diabetes prevalence in India was found, with a concentrated burden at the southern coastline (cluster 1, Andhra Pradesh and Telangana: prevalence, 3.01% [1864 of 61 948 individuals]; cluster 2, Tamil Nadup and Kerala: prevalence, 4.32% [3429 of 79 435 individuals]; cluster 3, east Orissa: prevalence, 2.81% [330 of 11 758 individuals]; cluster 4, Goa: prevalence, 4.43% [83 of 1883 individuals]). Having obesity and overweight (odds ratio [OR], 2.44; 95% CI, 2.18-2.73; P < .001; OR, 1.66; 95% CI, 1.52-1.82; P < .001, respectively), smoking tobacco (OR, 3.04; 95% CI, 1.66-5.56; P < .001), and consuming alcohol (OR, 2.01; 95% CI, 1.37-2.95; P < .001) were associated with increased odds of diabetes. Regional TB endemicity and diabetes spatial distributions showed that there is a lack of consistent geographical overlap between these 2 diseases (eg, TB cluster 4: 60 213 TB cases; 186.79 diabetes cases in 20 183.88 individuals; 0.93% diabetes prevalence; TB cluster 8: 47 381 TB cases; 180.53 diabetes cases in 22 449.18 individuals; 0.80% diabetes prevalence; TB cluster 9: 37 620 TB cases, 601.45 diabetes cases in 12 879.36 individuals; 4.67% diabetes prevalence). In this study, identifying spatial clusters of diabetes on the basis of a nationally representative survey suggests that India may face different levels of disease severity, and each region might need to implement control strategies that are more appropriate for its unique epidemiologic context.

Highlights

  • Diabetes has been identified by the World Health Organization as an important public health issue.[1]

  • Having obesity and overweight, smoking tobacco (OR, 3.04; 95% CI, 1.66-5.56; P < .001), and consuming alcohol (OR, 2.01; 95% CI, 1.37-2.95; P < .001) were associated with increased odds of diabetes

  • In this study, identifying spatial clusters of diabetes on the basis of a nationally representative survey suggests that India may face different levels of disease severity, and each region might need to implement control strategies that are more appropriate for its unique epidemiologic context

Read more

Summary

Introduction

Diabetes has been identified by the World Health Organization as an important public health issue.[1] The estimated global burden of diabetes in 2014 was 422 million adults, and it is expected to increase to 552 million by 2030.1,2 Interest regarding the biological and epidemiologic interactions between diabetes and other diseases has recently grown. Tuberculosis (TB) has been considered part of the spectrum of diabetes-associated diseases.[3] Possible causes of the diabetes-TB interaction include impaired glucose tolerance associated with TB treatment, which potentially increases the risk of diabetes.[4] the mechanisms underlining glucose intolerance and diabetes in individuals with TB infections are not completely understood and are still subject of study.[4,5]. The second-most populous country in the world with 1.3 billion residents,[6] has the largest number of diabetes cases, with a prevalence of 7.8%.7 Tuberculosis severely affects the Indian population, with an incidence of 2.79 million in 2016.8 Such high burdens of both TB and diabetes might increase the likelihood of disease interactions that could worsen mortality from both diseases.[5,9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call