Abstract

In this study, dry season radon flux densities and radon fluxes have been determined at the rehabilitated Nabarlek uranium mine in northern Australia using conventional charcoal canisters. Environmental background levels amounted to 31+/- 15 milli Becquerel per m(2) per second (mBq m(-2) s(-1)). Radon flux densities within the fenced rehabilitated mine area showed large variations with a maximum of 6500 mBq m(-2) s(-1) at an area south of the former pit characterised by a disequilibrium between (226)Ra and (238)U. Radon flux densities were also high above the areas of the former pit (mean 971 mBq m(-2) s(-1)) and waste rock dump (mean 335 mBq m(-2) s(-1)). The lower limit for the total pre-mining radon flux from the fenced area (140 ha) was estimated to 214 kBq s(-1), post-mining radon flux amounted to 174 kBq s(-1). Our study highlights that the results of radon flux studies are vitally dependant on the selection of individual survey points. We suggest the use of a randomised system for both the selection of survey points and the placement of charcoal canisters at each survey point, to avoid over estimation of radon flux densities. It is also important to emphasize the significance of having reliable pre-mining radiological data available to assess the success of rehabilitation of a uranium mine site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.