Abstract

BackgroundCommunity- associated methicillin resistant Staphylococcus aureus (CA-MRSA) cause serious infections and rates continue to rise worldwide. Use of geocoded electronic health record (EHR) data to prevent spread of disease is limited in health service research. We demonstrate how geocoded EHR and spatial analyses can be used to identify risks for CA-MRSA in children, which are tied to place-based determinants and would not be uncovered using traditional EHR data analyses.MethodsAn epidemiology study was conducted on children from January 1, 2002 through December 31, 2010 who were treated for Staphylococcus aureus infections. A generalized estimated equations (GEE) model was developed and crude and adjusted odds ratios were based on S. aureus risks. We measured the risk of S. aureus as standardized incidence ratios (SIR) calculated within aggregated US 2010 Census tracts called spatially adaptive filters, and then created maps that differentiate the geographic patterns of antibiotic resistant and non-resistant forms of S. aureus.ResultsCA-MRSA rates increased at higher rates compared to non-resistant forms, p = 0.01. Children with no or public health insurance had higher odds of CA-MRSA infection. Black children were almost 1.5 times as likely as white children to have CA-MRSA infections (aOR 95% CI 1.44,1.75, p < 0.0001); this finding persisted at the block group level (p < 0.001) along with household crowding (p < 0.001). The youngest category of age (< 4 years) also had increased risk for CA-MRSA (aOR 1.65, 95%CI 1.48, 1.83, p < 0.0001). CA-MRSA encompasses larger areas with higher SIRs compared to non-resistant forms and were found in block groups with higher proportion of blacks (r = 0.517, p < 0.001), younger age (r = 0.137, p < 0.001), and crowding (r = 0.320, p < 0.001).ConclusionsIn the Atlanta MSA, the risk for CA-MRSA is associated with neighborhood-level measures of racial composition, household crowding, and age of children. Neighborhoods which have higher proportion of blacks, household crowding, and children < 4 years of age are at greatest risk. Understanding spatial relationship at a community level and how it relates to risks for antibiotic resistant infections is important to combat the growing numbers and spread of such infections like CA-MRSA.

Highlights

  • Community- associated methicillin resistant Staphylococcus aureus (CA-Methicillin resistant Staphylococcus aureus (MRSA)) cause serious infections and rates continue to rise worldwide

  • The goals of this study are to characterize the neighborhoods with the highest rates of Community- associated methicillin resistant Staphylococcus aureus (CA-MRSA) infection in the Atlanta–Sandy Springs–Roswell, GA Metropolitan Statistical Area, and to analyze the spatial distribution of CA-MRSA compared to the non-antibiotic resistant form of S. aureus, known as community-associated methicillin sensitive Staphylococcus aureus (CA-Methicillin sensitive Staphylococcus aureus (MSSA))

  • Of 13,938 unique children with a S. aureus infection, 2084 were excluded for invalid addresses; and 1207 children were excluded with hospital-acquired infections

Read more

Summary

Introduction

Community- associated methicillin resistant Staphylococcus aureus (CA-MRSA) cause serious infections and rates continue to rise worldwide. The use of geocoded electronic health record (EHR) data for improving health outcomes is in its infancy [1] for infectious diseases such as community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) infections [2,3,4]. This is an important disease to study because it is preventable and the number of children hospitalized with CA-MRSA infections in the United States increased from 6.7 cases per 1000 admissions in 2002 to 21.2 cases in 2007 [5].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call