Abstract
BackgroundIn Brazil, 99% of the cases of malaria are concentrated in the Amazon region, with high level of transmission. The objectives of the study were to use geographic information systems (GIS) analysis and logistic regression as a tool to identify and analyse the relative likelihood and its socio-environmental determinants of malaria infection in the Vale do Amanhecer rural settlement, Brazil.MethodsA GIS database of georeferenced malaria cases, recorded in 2005, and multiple explanatory data layers was built, based on a multispectral Landsat 5 TM image, digital map of the settlement blocks and a SRTM digital elevation model. Satellite imagery was used to map the spatial patterns of land use and cover (LUC) and to derive spectral indices of vegetation density (NDVI) and soil/vegetation humidity (VSHI). An Euclidian distance operator was applied to measure proximity of domiciles to potential mosquito breeding habitats and gold mining areas. The malaria risk model was generated by multiple logistic regression, in which environmental factors were considered as independent variables and the number of cases, binarized by a threshold value was the dependent variable.ResultsOut of a total of 336 cases of malaria, 133 positive slides were from inhabitants at Road 08, which corresponds to 37.60% of the notifications. The southern region of the settlement presented 276 cases and a greater number of domiciles in which more than ten cases/home were notified. From these, 102 (30.36%) cases were caused by Plasmodium falciparum and 174 (51.79%) cases by Plasmodium vivax. Malaria risk is the highest in the south of the settlement, associated with proximity to gold mining sites, intense land use, high levels of soil/vegetation humidity and low vegetation density.ConclusionsMid-resolution, remote sensing data and GIS-derived distance measures can be successfully combined with digital maps of the housing location of (non-) infected inhabitants to predict relative likelihood of disease infection through the analysis by logistic regression. Obtained findings on the relation between malaria cases and environmental factors should be applied in the future for land use planning in rural settlements in the Southern Amazon to minimize risks of disease transmission.
Highlights
In Brazil, 99% of the cases of malaria are concentrated in the Amazon region, with high level of transmission
The city of Juruena presented 720 positive smears for malaria in 2004. This corresponded to an annual parasite index (API) of 116.8 per 1.000 inhabitants, which represented an increase of 284.9% in the incidence of positive slides when compared to the 2003 API of 41.0 per 1,000 inhabitants [7]
Inasmuch as the risk of contracting malaria is related to diverse factors such as environmental alterations caused by human activities, this study aims to identify and analyse local-scale, spatial patterns of the disease in the Vale do Amanhecer settlement, an area with documented, elevated malaria incidences [20]
Summary
In Brazil, 99% of the cases of malaria are concentrated in the Amazon region, with high level of transmission. Malaria is one a major public health problem and it affects more than three hundred million individuals per year. It severely impacts the African continent and affects more than one million people per year in the Amazon countries in South America. Malaria is one of the most serious and striking of the transmissible diseases, and it affects approximately 500 million people per year worldwide, causing more than one million deaths each year [2]. In Brazil, 99% of the cases of malaria are concentrated in the Amazon region. The distribution of malaria is commonly associated with environmental conditions and, mainly, with the tropical climate [4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.