Abstract

This paper presents a model for the realistic planning of multi-microgrids in the context of Active Distribution Networks with the assistance of Geographic Information Systems. The model considers the distribution system grid as well as the geographic features of the Region of Interest. It also includes long-term purchase decisions and short-term operational constraints, and considers uncertainties associated with electricity demand and Renewable Energy Resources using an existing Two-Stage Stochastic Programming approach. Geographic Information Systems along with Deep Learning are used to estimate the areas of rooftops within the Region of Interest and model the Low Voltage grid. The planning model is used to study the feasibility of implementing a multi-microgrid system consisting of 4 individual microgrids at an Active Distribution Network in a municipality in the state of São Paulo, Brazil. The results of the model presented in this paper are compared with the results obtained using Monte Carlo Simulations and an existing, less detailed, Two Stage Stochastic model. It is demonstrated that the stochastic solutions are close to those obtained with Monte Carlo at a lower computational cost, and that the use of Geographic Information allows to determine both the capacity and location of the PV panels, batteries, and distribution transformers on the microgrids grid, thus providing more precise and useful planning results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call