Abstract

Microplastics provide new microbial niches in aquatic environments. Nevertheless, information on the assembly processes and potential ecological mechanisms of bacterial communities on microplastics from reservoirs is lacking. Here, we investigated the assembly processes and potential ecological mechanisms of bacterial communities on microplastics through full-length 16S rRNA sequencing in the Three Gorges Reservoir area of the Yangtze River, compared to water and sediment. The results showed that the Burkholderiaceae were the dominant composition of bacterial communities in microplastics (9.95%), water (25.14%), and sediment (7.22%). The niche width of the bacterial community on microplastics was lower than those in water and sediment. For the microplastics and sediment, distance-decay relationship results showed that the bacterial community similarity was significantly decreased with increasing geographical distance. In addition, the spatial turnover rate of the bacterial community on microplastics along the ~662-km reaches of the Yangtze River in the Three Gorges Reservoir area was higher than that in sediment. Null model analysis showed that the assembly processes of the bacterial community on microplastics were also different from those in water and sediments. Dispersal limitation (52.4%) was the primary assembly process of the bacterial community on microplastics, but variable selection was the most critical assembly process of the bacterial communities in water (47.6%) and sediment (66.7%). Thus, geographic dispersal limitation dominated the assembly processes of bacterial communities on microplastics. This study can enhance our understanding of the assembly mechanism of bacterial communities caused by the selection preference for microplastics from the surrounding environment. IMPORTANCE In river systems, microplastics create new microbial niches that significantly differ from those of the surrounding environment. However, the potential relationships between the biogeographic distribution and assembly processes of microbial communities on microplastics were still not well understood. This study could help us address the lack of knowledge about the assembly processes of bacterial communities on microplastics caused by selection from the surrounding environment. In this study, strong geographic dispersal limitation dominated assembly processes of bacterial communities on microplastics, compared to water and sediment, which may be responsible for the microplastic bacterial richness, and the niche distance was lower than those in water and sediment. In addition, sediment may be the main potential source of bacterial communities on microplastics in the Three Gorges Reservoir area, which makes higher community similarity between microplastics and sediment than between microplastics and water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.