Abstract
Human exposure to fine particulate matter (PM(2.5)) is associated with short and long term adverse health effects. The amount of ambient PM(2.5) that infiltrates indoor locations such as residences depends on air exchange rate (ACH), penetration factor, and deposition rate. ACH varies by climate zone and thus by geographic location. Geographic variability in the ratio of exposure to ambient concentration is estimated based on comparison of three modeling domains in different climate zones: (1) New York City; (2) Harris County in Texas, and (3) a six-county domain along the I-40 corridor in North Carolina. Inter-individual variability in exposure to PM(2.5) was estimated using the Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM) model. ACH is distinguishably the most sensitive input for both ambient and nonambient exposure to PM(2.5). High ACH leads to high ambient exposure indoors but lower non-ambient exposure, and vice versa. For summer, the average ratio of exposure to ambient concentration varies by 13 percent among the selected domains, mainly because of differences in housing stock, climate zone, and seasonal ACH. High daily average exposures for some individuals are mainly caused by non-ambient exposure to smoking or cooking. The implications of these results for interpretation of epidemiological studies are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.