Abstract

BackgroundInfant mortality is a major public health problem in the State of Michigan and the United States. The primary adverse reproductive outcome underlying infant mortality is low birthweight. Visualizing and exploring the spatial patterns of low birthweight and infant mortality rates and standardized incidence and mortality ratios is important for generating mechanistic hypotheses, targeting high-risk neighborhoods for monitoring and implementing maternal and child health intervention and prevention programs and evaluating the need for health care services. This study investigates the spatial patterns of low birthweight and infant mortality in the State of Michigan using automated zone matching (AZM) methodology and minimum case and population threshold recommendations provided by the National Center for Health Statistics and the US Census Bureau to calculate stable rates and standardized incidence and mortality ratios at the Zip Code (n = 896) level. The results from this analysis are validated using SaTScan. Vital statistics birth (n = 370,587) and linked infant death (n = 2,972) records obtained from the Michigan Department of Community Health and aggregated for the years 2004 to 2006 are utilized.ResultsFor a majority of Zip Codes the relative standard errors (RSEs) of rates calculated prior to AZM were greater than 20%. Spurious results were the result of too few case and birth counts. Applying AZM with a target population of 25 cases and minimum threshold of 20 cases resulted in the reconstruction of zones with at least 50 births and RSEs of rates 20–22% and below respectively, demonstrating the stability reliability of these new estimates. Other AZM parameters included homogeneity constraints on maternal race and maximum shape compactness of zones to minimize potential confounding. AZM identified areas with elevated low birthweight and infant mortality rates and standardized incidence and mortality ratios. Most but not all of these areas were also detected by SaTScan.ConclusionUnderstanding the spatial patterns of low birthweight and infant deaths in Michigan was an important first step in conducting a geographic evaluation of the State's reported high infant mortality rates. AZM proved to be a useful tool for visualizing and exploring the spatial patterns of low birthweight and infant deaths for public health surveillance. Future research should also consider AZM as a tool for health services research.

Highlights

  • Infant mortality refers to infants born alive who die within their first year of life

  • The primary adverse reproductive outcomes that increase newborn's risk of death are premature birth, low birthweight, which includes very low birthweight and congenital defects [1]

  • The authors conclude that the population stability derived from automated zone matching (AZM) resulted in more reliable LLTIdeprivation correlation coefficients than those based on ward boundaries, demonstrating the importance of AZM in this analysis

Read more

Summary

Introduction

Infant mortality refers to infants born alive who die within their first year of life. This study investigates the spatial patterns of low birthweight and infant mortality in the State of Michigan using automated zone matching (AZM) methodology and minimum case and population threshold recommendations provided by the National Center for Health Statistics and the US Census Bureau to calculate stable rates and standardized incidence and mortality ratios at the Zip Code (n = 896) level. The results from this analysis are validated using SaTScan. The authors conclude that the population stability derived from AZM resulted in more reliable LLTIdeprivation correlation coefficients than those based on ward boundaries, demonstrating the importance of AZM in this analysis

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.