Abstract

In many applications of graph processing, the input data is often generated from an underlying geometric point data set. However, existing high-performance graph processing frameworks assume that the input data is given as a graph. Therefore, to use these frameworks, the user must write or use external programs based on computational geometry algorithms to convert their point data set to a graph, which requires more programming effort and can also lead to performance degradation. In this paper, we present our ongoing work on the Geo- Graph framework for shared-memory multicore machines, which seamlessly supports routines for parallel geometric graph construction and parallel graph processing within the same environment. GeoGraph supports graph construction based on k-nearest neighbors, Delaunay triangulation, and b-skeleton graphs. It can then pass these generated graphs to over 25 graph algorithms. GeoGraph contains highperformance parallel primitives and algorithms implemented in C++, and includes a Python interface. We present four examples of using GeoGraph, and some experimental results showing good parallel speedups and improvements over the Higra library. We conclude with a vision of future directions for research in bridging graph and geometric data processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.