Abstract
Naturally occurring, geogenic manganese (Mn) and iron (Fe) are frequently found dissolved in groundwater at concentrations that make the water difficult to use (deposits, unpleasant taste) or, in the case of Mn, a potential health hazard. Over 6000 groundwater measurements of Mn and Fe in Southeast Asia and Bangladesh were assembled and statistically examined with other physicochemical parameters. The machine learning methods random forest and generalized boosted regression modeling were used with spatially continuous environmental parameters (climate, geology, soil, topography) to model and map the probability of groundwater Mn > 400 μg/L and Fe > 0.3 mg/L for Southeast Asia and Bangladesh. The modeling indicated that drier climatic conditions are associated with a tendency of elevated Mn concentrations, whereas high Fe concentrations tend to be found in a more humid climate with elevated levels of soil organic carbon. The spatial distribution of Mn > 400 μg/L and Fe > 0.3 mg/L was compared and contrasted with that of the critical geogenic contaminant arsenic (As), confirming that high Fe concentrations are often associated with high As concentrations, whereas areas of high concentrations of Mn and As are frequently found adjacent to each other. The probability maps draw attention to areas prone to elevated concentrations of geogenic Mn and Fe in groundwater and can help direct efforts to mitigate their negative effects. The greatest Mn hazard is found in densely populated northwest Bangladesh and the Mekong, Red and Ma River Deltas of Cambodia and Vietnam. Widespread elevated Fe concentrations and their associated negative effects on water infrastructure pose challenges to water supply. The Mn and Fe prediction maps demonstrate the value of machine learning for the geospatial prediction modeling and mapping of groundwater contaminants as well as the potential for further constituents to be targeted by this novel approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Science of The Total Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.