Abstract
The geoelectrical investigation of the proposed Aba River dam at Amapu-Ideobia, Akanu Ngwa Southeastern Nigeria has been carried out. The objective of this study is to determine the downward and lateral trends of the rock layers or units along and near the proposed dam axis and deduce the possible structures that may enhance workable design of the dam. ABEM Terrameter SAS 4000 model was used and the symmetrical Schlumberger configuration was adopted. Twelve (12) Vertical Electrical Sounding stations were located and fully occupied along the dam axis. Preliminary input data from the field were fed into Zohdy software to generate real resistivities and depths to geoelectric layers. Five geoelectric layers were interpreted as Loamy Top soil, Alluvial matter, Pebble bed, Sandy lateritic and Gravely sand. Layer 1 (the top loamy soil) was encountered in VES 1, 2, 3, 4, 5, 9, 10, 11 and 12 locations with maximum thickness of 1.5 m in VES 3 and 4. Resistivity values ranged from 216 to 519 Ohm-m. The second layer (lateritic matter) had a maximum lower depth of 5 m in VES 3 and 4 points. This was not encountered in VES 6 point being replaced by alluvium. Resistivity values ranged from 101 to 6190 Ohm-m. Layer 3 was interpreted as a restricted pebble bed which occurred only at VES 6, 7 and 8 locations flanking the river course with thickness of about 3.5 m and resistivity values range of 182 415 Ohm-m. The fourth layer was modeled as the alluvial matter and restricted to the river course (VES 6, 7, 8) locations with base at between 12.5 m in VES 8 and 8 m in VES 6. The last modeled layer (Layer 5) was composed of gravely sandstone that underlined the whole study area apart from the restricted pebble bed at the NE crestal portion (VES 12). No structures like fractures, lineaments and faults that would be of deleterious effect were observed in all the VES points down to about 40 m. However, it was observed that the axial length had overriding sandy matter with high porosity and potentially rife for great infiltration; a condition that could facilitate seepage around the reservoir portion of the dam.
Highlights
There are various approaches available to source for information about the subsurface, and the best is undoubtedly the direct observation of earth materials
Surface electrical resistivity surveying is based on the principle that the distribution of electrical potential in the ground around a current-carrying electrode depends on the electrical resistivities and distribution of the surrounding soils and rocks
Not necessarily the ρa values, are employed in resistivity sounding data interpretation, the log-log plots were employed for the determination of number of geoelectric layers prior to modeling
Summary
There are various approaches available to source for information about the subsurface, and the best is undoubtedly the direct observation of earth materials. This approach is rarely possible to the extent that people would like [1]. Surface electrical resistivity surveying is based on the principle that the distribution of electrical potential in the ground around a current-carrying electrode depends on the electrical resistivities and distribution of the surrounding soils and rocks. The usual practice in the field is to apply an electrical direct current (DC) between two electrodes implanted in the ground Open Access IJG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.