Abstract

We studied the geoeffectiveness, speed, solar source, and flare association of a set of 378 halo coronal mass ejections (CMEs) of cycle 23 (1996–2005, inclusive). We compiled the minimum Dst values occurring within 1–5 days after the CME onset. We compared the distributions of such Dst values for the following subsets of halo CMEs: disk halos (within 45 deg from disk center), limb halos (beyond 45 degrees but within 90 deg from disk center), and backside halo CMEs. Defining that a halo CME is geoeffective if it is followed by Dst ≤ −50 nT, moderately geoeffective if −50 nT < Dst < −100 nT, and strongly geoeffective if Dst ≤ −100 nT, we find that the disk halos are followed by strong storms, limb halos are followed by moderate storms, and backside halos are not followed by significant storms. The Dst distribution for a random sample is nearly identical to the case of backside halos. About 71% of all frontside halos are geoeffective, supporting the high rate of geoeffectiveness of halo CMEs. A larger fraction (75%) of disk halos are geoeffective. Intense storms are generally due to disk halos and the few intense storms from limb halos occur only in the maximum and declining phases. Most intense storms occur when there are successive CMEs. The delay time between CME onset and minimum Dst value is the smallest for limb halos, suggesting that the sheath is geoeffective in these cases. The geoeffectiveness rate has prominent dips in 1999 and 2002 (the beginning and end years of the solar maximum phase). The numbers of all frontside and geoeffective frontside halos show a triple peak structure similar to the number of intense geomagnetic storms. The difference in flare sizes among geoeffective and nongeoeffective halos is not significant. The nongeoeffective CMEs are generally slower and have more easterly or limbward solar sources compared to the geoeffective ones; source location and speed are the most important parameters for geoeffectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.