Abstract

The Tuva–Mongolian terrane of the Central Asian Orogenic Belt is a composite structure with a Vendian–Cambrian terrigenous–carbonate cover. The Sangilen block in the southern part of the belt is a smaller composite structure, in which tectono–stratigraphic complexes of different age that were produced under various conditions were amalgamated in the course of Early Paleozoic tectonic cycle. The P–T parameters of the Early Paleozoic metamorphism in the western part of the Sangilen block corresponded to the amphibolite facies. The gneisses of the Erzin Complex contain relict granulite-facies mineral assemblages. The granulites are dominated by metasediments typical of deep-water basins on passive continental margins. The only exception is granulites of the Lower Erzin tectonic nappe of the Chinchlig thrust system: these rocks are metatholeiites, tonalites, and trondhjemites, whose REE patterns are similar to those of MORB. The composition of these granulites and their high Sm/Nd ratios indicate that the rocks were derived from juvenile crust that had been formed in an environment of a mature island arc or backarc basin. It is reasonable to believe that these rocks are fragments of the Late Riphean basement of the Sangilen block. The average 206Pb/238U zircon age of the garnet–hypersthene granulites is 494 ± 11 Ma. With regard for the zircon age of the postmetamorphic granitoids, the granulite-facies metamorphism occurred within the age range of 505–495 Ma. The peak metamorphic temperature reached 910–950°C, and the pressure was 3–4 kbar, which corresponds to ultrahigh-temperature/low-pressure (UHT–LP) metamorphism. The garnet–hypersthene orthogranulites were formed at a temperature that decreased to ~850°C and pressure that increased to ~5.5‒7 kbar. It can be hypothesized that the earlier UHT–LP granulites were produced at an elevated heat flux and were later (in the course of continuing collision) overlain by a relatively cold tectonic slab, and this leads to a certain temperature decrease and pressure increase. This relatively cold slab could consist of fragments of the Vendian elevated-pressure metamorphic belt whose development terminated at the Vendian–Cambrian boundary before the onset of the Early Paleozoic regional metamorphism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call