Abstract

Two end member geodynamic settings produce the observed examples of rapid voluminous felsic (rhyolitic) magmatism through time. The first is driven by mantle plume head arrival underneath a continent and has operated in an identifiable and regular manner since at least 2.45 Ga. This style produces high temperature (≤ 1100 °C), low aspect ratio rheoignimbrites and lavas that exhibit high SiO 2/Al 2O 3 ratios, high K 2O/Na 2O ratios, and where available data exists, high Ga/Al 2O 3 ratios (> 1.5) with high F (in thousands of parts per million) and low water content. F concentration is significant as it depolymerizes the silicate melt, influencing the magmas' physical behavior during development and emplacement. These rhyolites are erupted as part of rapidly emplaced (10–15 Myr) mafic LIPs and are formed primarily by efficient assimilation-fractional crystallization processes from a mafic mantle parent. The second is driven by lithospheric extension during continental rifting or back arc evolution and is exclusive to the Phanerozoic. SLIPs (silicic large igneous provinces) develop over periods < 40 Myr and manifest in elongate zones of magmatism that extend up to 2500 km, contrasting with the mafic LIP style. Some of the voluminous felsic magmas within SLIPs appear to have a very similar geochemistry and petrogenesis to that of the rhyolites within mafic LIPs. Other voluminous felsic magmas within SLIPs are sourced from hydrous lower crust, and contrast with those sourced from the mantle. They exhibit lower temperatures (< 900 °C), explosive ignimbrites with lower SiO 2/Al 2O 3 ratios, and lower K 2O/Na 2O ratios. Rapid voluminous felsic magmatism represents both extreme examples of continental growth since the Archean, and also dramatic periods of crustal recycling and maturation during the Phanerozoic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.