Abstract
The Lushan Ms7.0 earthquake, occurred on April 20th, 2013, is another strong earthquake that occurred on Longmen Mountain Faults after the Wenchuan Ms8.0 earthquake. In this paper we construct a finite element model depicting fault frictional mechanism to study the geodynamics of these two strong earthquakes. The locations of the initial rupture points and the dislocation forms of the Wenchuan earthquake and Lushan earthquake are simulated to find out the potential relationship between the two earthquakes. Simulative results show that the elevation, fault geometry, and the different rheological strengths between the Sichuan basin and Tibetan plateau play an important role in the earthquake dynamics. The dynamic simulation shows the initial rupture points are located at Yingxiu county and the rupture process is mainly along the northeast direction for the Wenchuan earthquake. In particular, the different frictional strengths caused by the fluid pressure decrease between the southern and northern segments of Longmenshan faults after the Wenchuan earthquake have affected the initial rupture point and the fault dislocation form of the Lushan earthquake, when considering the thrust of Tibetan plateau to Sichuan basin as the major dynamic source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.