Abstract

The knowledge of the neotectonic structures inSoutheastern Mongolia, that is considerably distant from the active plate boundaries, is important for determining a source of tectonic deformation and regular features of activation in the intracontinental setting. Our research was focused on the East Gobi and South Gobi depressions located inSoutheastern Mongolia, which developed since the Mesozoic and were activated to various degrees in the neotectonic stage. The study aimed to assess the paleostress state of the crust inSoutheastern Mongolia, identify the stages, factors and mechanisms of the Cenozoic activation of the regional structures of different strike, and determine the sources of activation. The analysis of the available literature suggests a similar history of their development in the Late Jurassic – Early Cretaceous (rifting) and Late Cretaceous – Paleogene (tectonic quiescence). In the Cenozoic stage, the depressions experienced activation of completely different styles. In theEast Gobidepression, left-lateral strike-slip faults were activated in the Tertiary, and the post-Late Cretaceous thrusting took place along the northeastern faults on the northern slope of the Totoshan uplift. In the Early Cenozoic, the N-S and N-W compression was dominant as evidenced by the deformed Late Cretaceous sediments and the reconstructed stress tensors typical of the compression and transpression regimes. An overview of the published data suggests that the most probable cause of such deformation was the impact of the Western Pacific zone of plate interaction. However, a potential influence of compression at the early stages of the Indo-Asian collision cannot be completely excluded. TheEast Gobidepression was low active in the second half of the Cenozoic. In contrast to the East Gobi depression, theSouth Gobiactivation began in the Late Cenozoic (Late Miocene – Early Pliocene). Young uplifts and forbergs (Gobi Altai eastern termination) developed actively and ‘cut’ the sediments of the basins originating from the Mesozoic. The W-E and N-W strike-slip and thrust faults were active in the Pliocene–Quaternary. The stress field reconstructions show compression, transpression and strike-slip regimes with the NE-trending axis of compression. Deformation in the East Goby Altay (as well as in Western andSouthwestern Mongolia) is driven by the India-Eurasia collision.

Highlights

  • Neotectonic structures in Southeastern Mongolia are an interesting object of studies aimed at establish‐ ing the regularities in activation of tectonic defor‐ mation in the intracontinental conditions

  • Our study was carried out in Southeastern Mongolia with the focus on the East Gobi and South Gobi depressions originating from the Mesozoic and activated to various degrees in the neotectonic stage (Fig. 1)

  • Special attention was given to collecting the data on fault zones that were active in the Late Cenozoic and/or active at the modern stage

Read more

Summary

Introduction

Neotectonic structures in Southeastern Mongolia are an interesting object of studies aimed at establish‐ ing the regularities in activation of tectonic defor‐ mation in the intracontinental conditions. It is challeng‐ ing to determine the source of deformation in this re‐ gion located far away from the active borders of the lithospheric plates. The modern terrain varies from mountains in the west (Gobi Altai) to weakly dissected flat areas in the east (Gobi plain). Our study was carried out in Southeastern Mongolia with the focus on the East Gobi and South Gobi depressions originating from the Mesozoic and activated to various degrees in the neotectonic stage (Fig. 1)

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call