Abstract

We investigate null and time-like geodesics in the Erez-Rosen space-time, that is, in the exterior gravitational field of a mass with quadrupole moment. By using the weak-field approximation of the Erez-Rosen metric, we find the solution of the equation for equatorial time-like geodesics and determine how they differ from the corresponding Schwarzschild geodesies. For the exact form of the Erez-Rosen metric, we only draw some qualitative conclusions about the influence of the quadrupole moment on the path of test particles and on the motion of photons. We derive the relativistic contribution of the quadrupole moment to the perihelion shift and to the precession of the ascending node.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.