Abstract

We define a class a metric spaces we call Brownian surfaces, arising as the scaling limits of random maps on general orientable surfaces with a boundary and we study the geodesics from a uniformly chosen random point. These metric spaces generalize the well-known Brownian map and our results generalize the properties shown by Le Gall on geodesics in the latter space. We use a different approach based on two ingredients: we first study typical geodesics and then all geodesics by an "entrapment" strategy. In particular, we give geometrical characterizations of some subsets of interest, in terms of geodesics, boundary points and concatenations of geodesics that are not homotopic to 0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.