Abstract
Abstract In a recent paper [17] we studied asymmetric metric spaces; in this context we studied the length of paths, introduced the class of run-continuous paths; and noted that there are different definitions of “length spaces” (also known as “path-metric spaces” or “intrinsic spaces”). In this paper we continue the analysis of asymmetric metric spaces.We propose possible definitions of completeness and (local) compactness.We define the geodesics using as admissible paths the class of run-continuous paths.We define midpoints, convexity, and quasi-midpoints, but without assuming the space be intrinsic.We distinguish all along those results that need a stronger separation hypothesis. Eventually we discuss how the newly developed theory impacts the most important results, such as the existence of geodesics, and the renowned Hopf-Rinow (or Cohn-Vossen) theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.