Abstract
Given a fixed closed manifold M, we exhibit an explicit formula for the distance function of the canonical L 2 Riemannian metric on the manifold of all smooth Riemannian metrics on M. Additionally, we examine the (metric) completion of the manifold of metrics with respect to the L 2 metric and show that there exists a unique minimal path between any two points. This path is also given explicitly. As an application of these formulas, we show that the metric completion of the manifold of metrics is a CAT(0) space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.