Abstract

The latest findings of static and spherically symmetric black hole solution give a potential platform to investigate the novel four-dimensional Einstein Gauss–Bonnet gravity. In order to obtain a rotating black hole solution, we first adopt the Newman Janis algorithm and study the structure of its horizons. To analyze the said black hole shadow, we move forward to compute expressions of the celestial coordinates using the geodesic equations. Furthermore, we provide a detailed analysis of the shadow size and its distortion parameter, adopting the Hioki and Maeda method, together with the applications of a supermassive black hole shadow in the center of nearby galaxy Messier 87 and obtained constraints on the relationships of spin and charge. From the obtained results, we demonstrate that both spin and coupling parameters of the black hole have a substantial influence on shadow structure. The increment in the values of these parameters diminishes the shadow radius. We also study the energy emission rate using the Hawking temperature. Furthermore, it is shown that whenever the collision of two electrically neutral test particles takes place in the vicinity of the black hole horizon, the Gauss–Bonnet black hole may serve as a particle accelerator with an infinitely large center of mass energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call