Abstract

We study the topology of admissible-loop spaces on a step-two Carnot group G. We use a Morse-Bott theory argument to study the structure and the number of geodesics on G connecting the origin with a 'vertical' point (geodesics are critical points of the 'Energy' functional, defined on the loop space). These geodesics typically appear in families (critical manifolds). Letting the energy grow, we obtain an upper bound on the number of critical manifolds with energy bounded by s: this upper bound is polynomial in s of degree l (the corank of the distribution). Despite this evidence, we show that Morse-Bott inequalities are far from sharp: the topology (i.e. the sum of the Betti numbers) of the loop space filtered by the energy grows at most as a polynomial in s of degree l-1. In the limit for s at infinity, all Betti numbers (except the zeroth) must actually vanish: the admissible-loop space is contractible. In the case the corank l=2 we compute exactly the leading coefficient of the sum of the Betti numbers of the admissible-loop space with energy less than s. This coefficient is expressed by an integral on the unit circle depending only on the coordinates of the final point and the structure constants of the Lie algebra of G.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.