Abstract
Various observations from cosmic microwave background radiation (CMBR), type Ia supernova and baryon acoustic oscillations (BAO) are strongly suggestive of an accelerated expansion of the universe which can be explained by the presence of mysterious energy known as dark energy. The quintessential matter coupled with gravity minimally is considered one of the possible candidates to represent the presence of such dark energy in our universe. In view of this scenario, we study the geodesic of massless particles as well as massive particles around a (2 + 1)-dimensional BTZ black hole (BH) spacetime surrounded by the quintessence. The effect of parameters involved in the deflection of light by such a BH spacetime is investigated in detail. The results obtained are then compared with a usual non-rotating BTZ BH spacetime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.