Abstract
We examine the dynamics of particles around a rotating regular black hole. In particular we focus on the effects of the characteristic length parameter of the spinning black hole on the motion of the particles by solving the equation of orbital motion. We have found that there is a fourth constant of motion that determines the dynamics of orbits out the equatorial plane similar as in the Kerr black hole. Through detailed analyses of the corresponding effective potentials for massive particles the possible orbits are numerically simulated. A comparison with the trajectories in a Kerr spacetime shows that the differences appear when the black holes rotate slowly for large values of the characteristic length parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.