Abstract

We examine the dynamics of a neutral particle around a Kerr–Newman black hole, and in particular focus on the effects of the charge of the spinning black hole on the motion of the particle. We first consider the innermost stable circular orbits (ISCO) on the equatorial plane. It is found that the presence of the charge of the black hole leads to the effective potential of the particle with stronger repulsive effects as compared with the Kerr black hole. As a result, the radius of the ISCO decreases as charge Q of the black hole increases for a fixed value of the black hole’s angular momentum a. We then consider a kick on the particle from its initial orbit out of the equatorial motion. The perturbed motion of the particle will eventually be bounded, or unbounded so that it escapes to spatial infinity. Even more, the particle will likely be captured by the black hole. Thus we analytically and numerically determine the parameter regions of the corresponding motions, in terms of the initial radius of the orbital motion and the strength of the kick. The comparison will be made with the motion of a neutral particle in the Kerr black hole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call