Abstract

The EPDiff equation (or the dispersionless Camassa–Holm equation in one dimension) is a well-known example of geodesic motion on the Diff group of smooth invertible maps (diffeomorphisms). Its recent two-component extension governs geodesic motion on the semidirect product DiffⓈ , where denotes the space of scalar functions. This paper generalizes the second construction to consider geodesic motion on DiffⓈ , where denotes the space of scalar functions that take values on a certain Lie algebra (e.g. = ⊗ (3)). Measure-valued delta-like solutions are shown to be momentum maps possessing a dual pair structure, thereby extending previous results for the EPDiff equation. The collective Hamiltonians are shown to fit into the Kaluza–Klein theory of particles in a Yang–Mills field and these formulations are shown to apply also at the continuum partial differential equation level. In the continuum description, the Kaluza–Klein approach produces the Kelvin circulation theorem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call