Abstract

We prove that a complete non-compact surface contains a domain which is isometric to a pipe cylinder if all prime closed geodesics in it have the same length. As an application, we show that a flat cylinder is conjugacy rigid in the class of surfaces whose universal covering planes satisfy the divergence property. We study the divergence property from the view point of geodesic conjugacy for the Euclidean plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.